Analysis


Pricing

Sample Preparation

Tips

Sample Submission


































UC Davis Plant Sciences



Analysis of Nitrogen (N2) & Nitrous Oxide (N2O) by GasBench-Precon-IRMS

The SIF provides isotope analysis (15N, 18O) of N2 and/or N2O in gas mixtures that may also contain O2 and CO2. This method is also used to analyze N2 and/or N2O purged from water samples with helium.

Analysis of 15N and 18O in Gas Mixtures
Stable isotope ratios of nitrogen (δ15N) and/or oxygen (δ18O) are measured using a ThermoScientific GasBench + Precon gas concentration system interfaced to a ThermoScientific Delta V Plus isotope-ratio mass spectrometer (Bremen, Germany). Gas samples are purged from vials through a double-needle sampler into a helium carrier stream (20 mL/min). Then, N2 and N2O are isolated and concentrated in preparation for isotopic analysis. First, N2 gas is sampled by a rotary 8-port valve fitted with a 5-100 µL sampling loop and timed to capture the peak N2 concentration in the carrier gas stream. This gas sample is passed to the IRMS through a molecular sieve 5A GC column (15m x 0.53mm ID,  25°C, 3 mL/min). A reference N2 peak is used to calculate provisional isotope ratios of the sample N2 peak.

As N2 is analyzed, the rest of the gas sample passes through a CO2 scrubber (Ascarite) and N2O is trapped and concentrated in 2 liquid nitrogen cryo-traps operated in series such that the N2O is held in the first trap until the non-condensing portion of the sample gas has been replaced by helium carrier, then passed to the second, smaller trap. Finally the second trap is warmed to ambient and the N2O is carried by helium to the IRMS via a Poroplot Q GC column (25m x 0.53 mm,  25°C, 1.8 mL/min). This column separates N2O from residual CO2. A reference N2O peak is used to calculate provisional isotope ratios of the sample N2O peak.

Final δ15N values are calculated by adjusting the provisional values for changes in linearity and instrumental drift such that correct δ15N values for laboratory reference materials are obtained. Two laboratory reference materials are analyzed every 10 samples. The laboratory reference materials are mixtures of N2 and N2O (e.g., 3% N2 + 1 ppm N2O with the balance He or 1 ppm N2O with balance N2). The N2 is calibrated against an Oztech N2 standard (Oztech Trading Co., δ15N vs air = -0.61). The calibration of the N2O is problematic since there are no suitable international standards. Thus, we calibrated 15N and 18O by thermally decomposing N2O in a heated gold tube (800°C) to convert N2O to N2 + O2. The resulting N2 was calibrated against the Oztech N2 standard, and the O2 was calibrated against an Oztech O2 standard (δ18O vs VSMOW = 27.48).

 

Limit of Quantitation and Long-term standard deviation for N2 & N2O Analysis by GasBench-Precon-IRMS

N2O : Limit of Quantitation: approx. 150 picomoles

           Long-term standard deviation: 15N, 0.1 ‰; 18O, 0.3 ‰

 

N2:    Limit of Quantitation: approx. 150 nanomoles

          Long-term standard deviation: 0.1 ‰


Maximum measurable gas concentrations are dependent upon both concentration and isotopic enrichment.  Please contact us if you intend to submit isotopically enriched samples at gas concentrations more than ten times that of ambient concentration.







 
e-mail: sif@ucdavis.edu | phone: 530-752-8100 | fax: 530-752-4361
UC Davis Stable Isotope Facility | Department of Plant Sciences
One Shields Avenue | Davis, California, 95616 | USA