EA-irms of sub-micromolar C samples: Concentration and $\delta^{13}C$ of DOC in sediment pore water

ASITA Conference 2014: Advances in Stable Isotope Techniques and Applications
University of California, Davis

Koushik Dutta

Department of Earth and Planetary Sciences

Large Lakes Observatory, Swenson College of Science and Engineering

UMD University of Minnesota Duluth
Driven to Discover
Objectives

• Elemental Analyzers coupled with IRMS in their “standard configuration” typically require samples with ~ 30 to 600 µg carbon for δ^{13}C analysis. Performances of two commercial EA-irms systems were evaluated analyzing precise amounts of organic C standards in sub-micromolar range

• Evaluation of carbon backgrounds of tin and silver capsules of various sizes

• Application of sub-micromolar EA-irms: Concentration and δ^{13}C of DOC in sediment pore water (with DOC ~ 2 to 30 mg.L$^{-1}$ and sample volume < 10 mL)
Instrumental setup

LLO-UMD setup:
- *Thermo Delta Plus XL IRMS*
- *Conflo-II interface*
- *Costech ECS4010 with Pneumatic autosampler*

EPS-Northwestern setup:
- *Thermo Delta V Plus IRMS*
- *Conflo-IV interface*
- *Costech ECS4010 with Zero Blank autosampler*
Preparation of primary standard and DOC samples

• Primary DOC standards were prepared by dissolving IAEA CH-6 Sucrose ($\delta^{13}C \approx -10.45\%_{oo}$) in de-ionized water, to a concentration of 0.3 μg C. μL^{-1}

• Between 1 and 40 μL of the primary standard solution were loaded in tin capsules and oven dried at 60 °C for 8 hours

• 2 to 10 mL of sediment pore water samples were taken in pre-combusted 10 mL glass vials, acidified to pH ~2 with dilute HCl, and evaporated to dryness in a vacuum oven at 60 °C. The residual organic matter were re-dissolved in 250 μL of de-ionized water, loaded in tin capsules and dried at 60 °C for 8 hours

• DOC concentrations of the pore water samples were measured independently using a Shimadzu TOC Analyzer
Elemental Analyzer (Costech ECS4010) in CHN configuration

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemental Analyzer</td>
<td>Helium flow: 80 mL.min(^{-1}) 4 m SS GC column @80°C</td>
</tr>
<tr>
<td>Conflo (II / IV)</td>
<td>Helium pressure: 1.2 bar 0% sample dilution</td>
</tr>
<tr>
<td>MS ion-source</td>
<td>Delta Plus XL</td>
</tr>
<tr>
<td>Emission</td>
<td>1.00 mA</td>
</tr>
<tr>
<td>Trap</td>
<td>20 V</td>
</tr>
<tr>
<td>Electron energy</td>
<td>83 V</td>
</tr>
<tr>
<td>Extraction</td>
<td>50%</td>
</tr>
</tbody>
</table>

Oxidation furnace (980°C) -> Reduction furnace (650°C) -> Moisture trap -> GC (80°C)
EA-irms analysis of IAEA CH-6 Sucrose: C peak areas

Net area [mV s]

Delta V Plus
Delta Plus XL

6 µg C
Blank
Carbon backgrounds of tin and silver capsules

<table>
<thead>
<tr>
<th>Capsule type</th>
<th>Background [µg C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin (3.5×5 mm)</td>
<td>0.6</td>
</tr>
<tr>
<td>Tin (5×9 mm)</td>
<td>1.4</td>
</tr>
<tr>
<td>Tin (9×10 mm)</td>
<td>2.4</td>
</tr>
<tr>
<td>Silver (5×9 mm)</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Cleaned or un-cleaned tin capsules?

Area all [mV/s] vs. δ^{13}C (‰)
Fitted curves: $y = y_0 + a e^{-bx} + c e^{-dx}$
EA-irms analysis of IAEA CH-6 Sucrose: $\delta^{13}C$ results
(corrected for non-linearity)

Correction eqn. : $\delta^{13}C_{corr} = \delta^{13}C_{meas} - (y_0 + a e^{-bx} + c e^{-dx}) + \delta^{13}C_{CH-6}$
Measurements of pore water DOC and δ^{13}C

- Measured with Delta Plus XL IRMS with Pneumatic Autosampler
- Only for samples with > 3 μg C
DOC concentrations: IRMS vs TOC analyzer

DOC measured with IRMS were 30% lower than those with TOC analyzer (sample volatilization?)
Conclusions

• Both C amount and δ^{13}C were analyzed in sub-micromolar range using a commercial EA-irms without any significant modification

• Precision of δ^{13}C were better than ±0.2‰ for samples with > 3 µg C

• Carbon background in untreated tin capsules range from 0.6 to 2.4 µg C depending on size; silver capsules have ~ 75% more background C than tin

• Method applied to analyze concentration and δ^{13}C of DOC in sediment pore water samples

• Potential applications of sub-micromolar EA-irms (δ^{13}C in trace non-volatile solids):
 • aerosols
 • pollen grains
 • single microfossil shells
Acknowledgements

Sincere thanks to:

• The organizing committee, ASITA
• Staffs of the Organic Geochemistry Lab, Large Lakes Observatory
• Staffs of the Dept. of Earth & Planetary Sciences, Northwestern University